ROBA-stop[®]-silenzio[®]

Stage and Elevator Brakes

- Also available as a single circuit brake
- Long-lasting low-noise operation
- Very short construction length

K.896.V09.GB

mayr®

ROBA-stop®-silenzio®

The perfect safety brake for elevator and stage drives

Characteristics

- Dual circuit brake as redundant brake system with a very short construction length
- Microswitch can be mounted for function monitoring
- Simplest possible installation
- No air gap adjustment necessary
- Continuously low noise levels for several hundred thousand switchings

The quietest safety brake

Due to a newly developed sound damping system, the ROBA-stop[®]-silenzio[®] is the quietest safety brake on the market, even in its standard version, basic variant (pages 4 to 7). In new condition, the noise level is < 50 dB (A) (noise pressure level measurement). This value lies well below the sound level of the mounted drive elements such as e.g. motor and gearbox. Further noise reduction is possible with a certain amount of extra work. Speak to us! We can accord with your request as far as noise levels are concerned, and guarantee our performance with a legally binding inspection certificate.

Long-lasting low-noise operation

Many safety brakes become louder after longer operation due to wear and scoring of the damping systems. Long-term tests have proved that the noise emissions from the ROBA-stop[®]silenzio[®] maintain the very low level produced in new condition even after over 300.000 switchings.

Safe choice due to large type and size variety

12 construction sizes in different designs fulfil the demands for elevator and stage drives with a braking torque range of 2 x 3 Nm to 2 x 2150 Nm and therefore cover all required operation areas.

Optimised construction space

Due to new construction and removal of the complicated intermediate flange plate, we have been able to create a unique short construction length.

High operational safety

The ROBA-stop[®]-silenzio[®] is available as a single circuit brake or as a dual circuit brake. On the dual circuit brake, two independently operating brake bodies ensure high operational safety. It fulfils the demands according to BGV C1 (previously (VBG 70), DIN 56925 and DIN 56921-11.

Simple installation

The compact design as well as the single-part toothed hub ensures simple handling and installation. The working air gap is preset and needs no re-adjustment. This means that malfunctions due to operating and adjusting mistakes can be ruled out.

Function monitoring

On request, we are able to fit the ROBA-stop[®]-silenzio[®] with a release monitoring for function checks on both brakes, ensuring the highest possible system and personal safety.

Maintenance-free

The ROBA-stop[®]-silenzio[®] is mainly maintenance-free. The maintenance work is limited to an inspection of the friction linings. These friction linings, however, are extremely wear-resistant, and have a very long lifetime.

Please Observe:

According to German notation, decimal points in this catalogue are represented with a comma (e.g. 0,5 instead of 0.5).

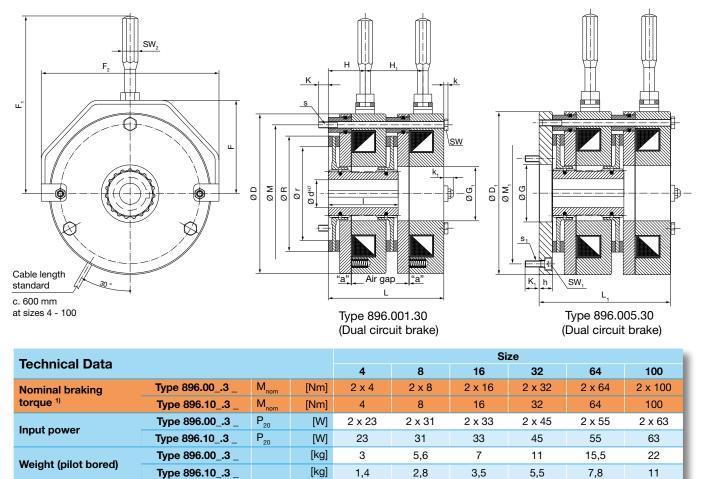
We reserve the right to make dimensional and constructional alterations.

ROBA-stop[®]-silenzio[®]

ROBA-stop®-silenzi	D®		may	r
ROBA-stop [®] -silenzio [®]			Page 4	D
Sizes 4 to 1800 Braking torques 2 x 3 to 2 x 2150 Nm		Туре 896.03_	Dual circuit brake Redundant brake system with two independently working brake bodies	
(Dual circuit brake) 3 to 2150 Nm (Single circuit brake)		Туре 896.13_	Single circuit brake Compact brake with an extremely short construction length	
Permitted shaft diameter 8 to 95				
ROBA-stop [®] -silenzio [®] in do	ouble rotor design		Page 8	D
Sizes 300 to 1800 Braking torques 450 to 4300 Nm Permitted shaft diameter 44 to 95		Type 896.23_	Double rotor design Single circuit brake with two rotors (4 friction surfaces) with doubled braking torque	
ROBA-stop [®] -silenzio [®] with	higher braking torque		Page 10	\square
Sizes 200 to 1800			Design with higher braking torques for passenger elevators	
Braking torques 2 x 300 to 2 x 2300 Nm (Dual circuit brake) 300 to 2300 Nm (Single circuit brake)		Туре 896.033_	Dual circuit brake Redundant brake system with two independently working brake bodies	
Permitted shaft diameter 45 to 95		Туре 896.133_	Single circuit brake	
ROBA [®] -sheavestop [®] - eleva	tor brake acc. EN 81 t	o prevent excessive	upward speed Page 12	
Sizes 500 to 1800 Braking torques 760 to 4600 Nm			Simple retrofitting possible: For mounting onto a drive sheave, gearbox output shaft and machine frame	
(Double rotor design) 380 to 2300 Nm (Single rotor design)		Туре 896.8	Double rotor design Single circuit brake with two rotors with doubled braking torque	
		Type 896.7	Single rotor design Single circuit brake with one rotor	
Short Description Installati	on		Page 14	
Proko Dimonojoning, Erioti	on-Power Diagrams, S	witching Times	Page 15	

Electrical Connection, Electrical Accessories

Guidelines

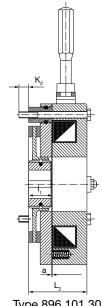

Page 23 🖒

Page 18 Þ

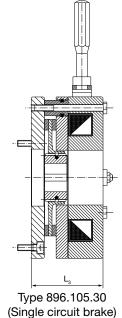
3

ROBA-stop[®]-silenzio[®] Type 896. $^{0}_{1}$ _ _.3_ – Sizes 4 to 100

Noises < 50 dB(A) (Noise pressure level measurement) at nominal braking torque



 Max. speed
 n_{max}
 [rpm]
 4500
 3500
 2900
 2500


 Nominal air gap (tolerance ± 0,07)
 a
 [mm]
 0,4
 0,5
 0,5
 0,5

1) Minimum nominal braking torque, braking torque tolerance + 60 %. For other braking torque adjustments: see Table below.

Braking Torque Adjustment [Nm]									
			Si	ze					
	4	8	16	32	64	100			
Dual cir	Dual circuit brake Type 896.03 _								
100 %	2 x 4	2 x 8	2 x 16	2 x 32	2 x 64	2 x 100			
120 %	2 x 5	2 x 10	2 x 19	2 x 40	2 x 77	2 x 120			
75 %	2 x 3	2 x 6	2 x 12	2 x 26	2 x 43	2 x 80			
Single of	circuit bra	ake Type	896.1	.3 _					
100 %	4	8	16	32	64	100			
120 %	5	10	19	40	77	120			
75 %	3	6	12	26	43	80			

Type 896.101.30 (Single circuit brake)

2200

0,5

2000

0,5

Type 896. $^{0}_{1}$ _ _.3_ – Sizes 4 to 100

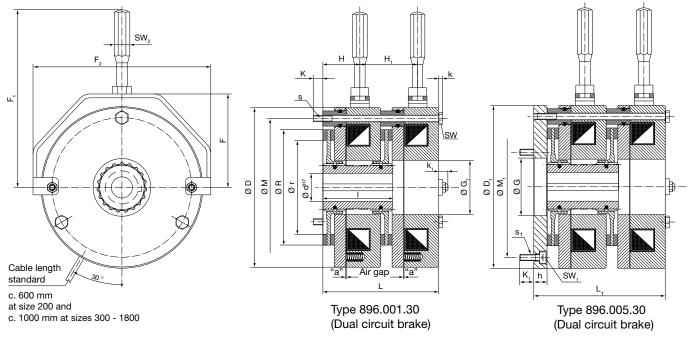
D:				Si	ize		
Dimens	sions	4	8	16	32	64	100
Ø d ^{H7 2)}	Min	8	9	14	18	18	24
	Max	15 ³⁾	20 ⁴⁾	24 ⁵⁾	30	35 ⁶⁾	46 7)
ØC)	88	108	130	153	168	195
ØD	1	88	108	130	153	168	195
F		50,5	64	79	88,5	97	111
F ₁		112,5	123	166,5	175,6	235	249
F ₂		105	128	158	175	190	222
ØG		26	45	45	52	60	77
ØG	1	29	36	45	52	60	77
н		29	27	33	37	42	36
H,		43	45,5	49	55	64	67
h		9	10	13	12	15	17
K		8,3	9	11,6	9,6	11,4	14,6
κ,		8	7,5	10,8	10,8	14	14
K ₂		6,7	9,5	10,8	9	9,9	11,5
k		2,8	3,5	4	4	5,3	5,3
k,		7,2	10,5	10,1	10,2	14,5	19,6
L		87	91	99	109	127	134
L,		96	101	112	121	142	151
L ₂		43,5	45,5	49	54,5	63,5	67
L ₃		52,5	55,5	62	66,5	78,5	84
1		50	52	58	67	75	79
•			P	ease observe the lo	ad on the shaft or k	xey.	
		18	20	20	25	30	30
I,			P	ease observe the lo	ad on the shaft or k	xey.	
ØN		72	90	112	132	145	170
ØM	l ₁	72	90	112	132	145	170
ØF	1	60	75	93	110,5	124	139
Ør		50	65	77	90	94	100
S		3 x M4	3 x M5	3 x M6	3 x M6	3 x M8	3 x M8
S ₁		3 x M4	3 x M5	3 x M6	3 x M6	3 x M8	6 x M8
SW		7	8	10	10	13	13
SW		3	4	5	5	6	6
SW	2	Ø 20 ⁸⁾	11	14	14	17	17

2) Other bore diameters available on request.

4) Over Ø 18 keyway acc. DIN 6885/3. 5) Over Ø 22 keyway acc. DIN 6885/3. 3) Over Ø 13 keyway acc. DIN 6885/3. 6) Over Ø 32 keyway acc. DIN 6885/3.

7) Over Ø 44 keyway acc. DIN 6885/3. 8) Hand release lever, round.

We reserve the right to make dimensional and constructional alterations.


Order Number Without additional parts 0 Hand release 1 Release monitoring 2 Hand release/release monitoring 3 Connection cable Flange plate 4 Flange plate/hand release 5 Without additional parts Flange plate/hand release/release monitoring 6 0 Flange plate/release monitoring With cover 7 1 \bigtriangledown \bigtriangledown \bigtriangledown 3 / / / 8 9 / 6 \triangle \triangle \triangle \triangle \triangle \triangle Sizes Dual circuit brake 0 0 Nominal braking torque 100 % Coil voltage 9) Hub bore Keyway acc. Ø d н7 Braking torque adjustment 120 % 24, 104, 180, 207 DIN 4 Single circuit brake 1 1 2 Braking torque adjustment 75 % [VDC] (Dimensions 6885/1 to 100 page 5) or 6885/3

Example: 100 / 896.001.3 / 24 / 40 / 6885/1

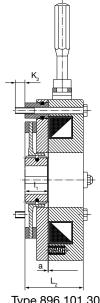
9) We recommend connection via smoothed DC voltage or a mayr®-bridge rectifier.

ROBA-stop[®]-silenzio[®] Type 896.0 $_1$ - .3 - Sizes 200 to 1800

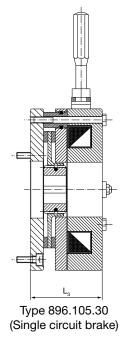
Noises < 50 dB(A) (Noise pressure level measurement) at nominal braking torque

Technical Data	Technical Data			Size					
Technical Data			200	300	500	800	1300	1800	
Nominal braking	Type 896.003 _	M _{nom}	[Nm]	2 x 200	2 x 300	2 x 500	2 x 800	2 x 1300	2 x 1800
torque ¹⁾	Type 896.103 _	M _{nom}	[Nm]	200	300	500	800	1300	1800
1	Type 896.003 _	P ₂₀	[W]	2 x 78	2 x 86	2 x 90	2 x 107	2 x 130	2 x 150
Input power	Type 896.103 _	P ₂₀	[W]	78	86	90	107	130	150
Weight (pilot bored)	Type 896.003 _		[kg]	34	49	60	92	126	158
weight (pilot bored)	Type 896.103 _		[kg]	17	24	30	46	63	79
Max. speed		n _{max}	[rpm]	1700	1500	1200	900	750	700
		а	[mm]	0,5	0,5	0,5	0,5	0,5	0,5

1) Minimum nominal braking torque, braking torque tolerance + 60 %. For other braking torque adjustments: see Table below.


Braking lorque Adjustment [Nm]										
		Size								
	200	300	500	800	1300	1800				
Dual circuit brake Type 896.03 _										
100 %	2 x 200	2 x 300	2 x 500	2 x 800	2 x 1300	2 x 1800				
120 %	2 x 240	2 x 360	2 x 600	2 x 1000	2 x 1560	2 x 2150				
75 %	2 x 150	2 x 225	2 x 380	2 x 600	2 x 980	2 x 1350				
Single of	circuit bra	ake Type a	896.1	.3 _						
100 %	200	300	500	800	1300	1800				
120 %	240	360	600	1000	1560	2150				
75 %	150	225	380	600	980	1350				

Braking Torque Adjustment [Nm]


TÜV (German Technical Inspectorate) License:

The sizes 200 to 1800 with **a microswitch for release monitoring** have been prototype-inspected by the South German TÜV as brake systems having an effect on the drive sheave shaft and as part of a protective system for the upwards-moving elevator cage against excessive speed.

License number:	Dual circuit brake	ABV 760/1
	Single circuit brake	ABV 761/1

Type 896.101.30 (Single circuit brake)

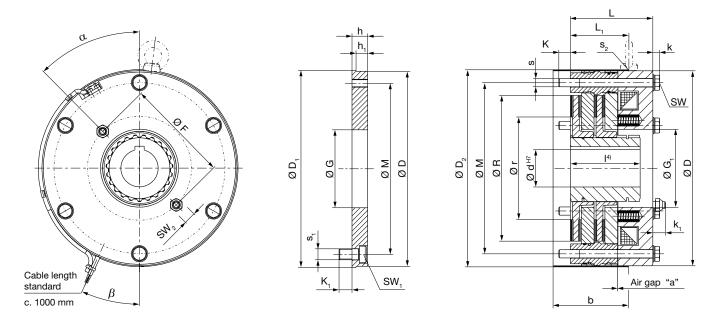
Type 896.⁰₁ _ _.3_ - Sizes 200 to 1800

		Size						
D	imensions	200	300	500	800	1300	1800	
Ø d ^{H7 2)}	Min	35	41	51	65	75	90	
g u ····,	Max	48	60 ³⁾	65	75	90	95	
	ØD	223	261	285	329	370	415	
	Ø D ₁	223	264	288	332	373	418	
	F	126,5	148	166,5	On request	On request	On request	
	F,	325,5	487,5	516,5	On request	On request	On request	
	F ₂	256	296	310	On request	On request	On request	
	ØG	84	96	114	135	146	160	
	ØG ₁	84	96	114	135	146	160	
	н	48	50,5	28,5	On request	On request	On request	
	H ₁	76	79,5	86	On request	On request	On request	
	h	18	21	28	31	30	36	
	K	15,9	18,7	25,5	28	28	32	
	K ₁	18	18	19	22	27	26	
	K ₂	11,7	18,1	21,5	22,5	27,5	24,5	
	k	8,9	10	10	13	13	13	
	k,	18	21	19	On request	On request	On request	
	L	152	159	172	189	199	205	
	L ₁	170	180	200	220	229	241	
	L ₂	76	79,5	86	94,5	99,5	102,5	
	L ₃	94	100,5	114	125,5	129,5	138,5	
	1	88	93	102	122	142	152	
	•		Ple	ase observe the lo	ad on the shaft or l	key.		
	ų.	35	50	50	60	70	75	
			Ple	ase observe the lo	ad on the shaft or l	•		
	ØМ	196	230	250	290	330	370	
	Ø M,	196	230	250	290	330	370	
	ØR	170	188	213	243	283,5	320	
	Ør	122	135	150	180	208	230	
s	Type 896.03_		3 x M12	6 x M12	6 x M16	8 x M16	8 x M16	
Ŭ	Type 896.13_	3 x M10	3 x M12	3 x M12	3 x M16	4 x M16	4 x M16	
	S ₁	6 x M10	6 x M12	6 x M16	6 x M16	8 x M16	8 x M20	
	SW	16	18	18	24	24	24	
	SW1	8	10	14	14	14	17	
	SW ₂	14	17	Ø 25 ⁴⁾	On request	On request	On request	

2) Other bore diameters available on request.
 3) Over Ø 56 keyway acc. DIN 6885/3.

4) Hand release lever, round.

We reserve the right to make dimensional and constructional alterations.


Order Number Without additional parts 0 Hand release 1 2 Release monitoring Hand release/release monitoring 3 Connection cable 4 Flange plate Flange plate/hand release 5 Flange plate/hand release/release monitoring 6 Without additional parts 0 Flange plate/release monitoring 7 With cover 1 ∇ \bigtriangledown ∇ 3 / / 8 9 6 / / . \triangle \triangle \bigtriangleup \bigtriangleup \triangle \triangle Sizes Dual circuit brake 0 0 Nominal braking torque 100 % Coil voltage 5) Hub bore Keyway acc. 24, 104, 180, 207 200 Single circuit brake 1 1 Braking torque adjustment 120 % Ødн7 DIN 2 Braking torque adjustment 75 % [VDC] 6885/1 (Dimensions to 1800 page 7) or 6885/3

Example: 200 / 896.001.3 / 24 / 40 / 6885/1

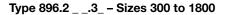
5) We recommend connection via smoothed DC voltage or a $mayr^{\circledast}\mbox{-bridge rectifier.}$

Double rotor design Type 896.2_ _.3_ - Sizes 300 to 1800

Noises < 65 dB(A) (Noise pressure level measurement) at nominal braking torque

Technical Data				Size					
rechnical Data			300	500	800	1300	1800		
Nominal braking torque 1)	Type 896.203 _	M_{nom}	[Nm]	600	1000	1600	2600	3600	
Input power	for overexcitation ²⁾	P ₂₀	[W]	348	352	412	500	552	
	for nominal voltage	P ₂₀	[W]	87	88	103	125	138	
Weight	without flange plate		[kg]	33	44	67	93	121	
weight	with flange plate		[kg]	40,5	53	80	113	153	
Max. speed		n _{max}	[rpm]	300	300	300	250	250	
Nominal air gap (tolerance ^{+0,15}) -0,1		а	[mm]	0,6	0,6	0,65	0,7	0,7	

1) Minimum nominal braking torque, braking torque tolerance + 60 %. For other braking torque adjustments: see Table below.


Braking Torque Adjustment [Nm]								
	Size							
	300	500	800	1300	1800			
100 %	600	1000	1600	2600	3600			
120 % ⁷⁾	720	1200	2000	3120	4300			
75 %	450	760	1200	1960	2700			

TÜV (German Technical Inspectorate) License:

The sizes 300 to 1800 with a **microswitch for release monitoring** have been prototype-inspected by the South German TÜV as brake systems having an effect on the drive sheave shaft and as part of a protective system for the upwards-moving elevator cage against excessive speed.

These brakes are single circuit brakes. A service brake is additionally required in elevators.

License number: ABV 762/1

Dime				Size		
Dime	nsions	300	500	800	1300	1800
	b	90	102	114	125	130
Ød ^{н7}	Min ³⁾	44	50	65	75	85
øu	Max	55	65	75	85	95
Ø	ðD	261	285	329	370	415
Ø	٥D ₁	264	288	332	373	418
) D ₂	264	288	332	373	418
Q	ð F	209	152	181	197	225
	ØG	96	114	135	146	160
Ø	ØG ₁	96	114	135	146	160
	h	21	28	31	30	36
	h ₁	15	17	19	23	23
	k	10	10	13	13	13
	k ₁	21	19	25	25	24
	к	18,1	16,9	23,3	23,3	28,3
	К 1	18	19	22	27	26
ļ	4)	93	102	122	142	152
	L	109,4	120,6	133,7	143,7	148,7
	L ₁	74,4	85,6	93,7	106,7	110,7
Ø	м	230	250	290	330	370
	Ør	135	150	180	208	230
Q	ð R	188	213	246	283,5	320
	S	3 x M12	6 x M12	6 x M16	8 x M16	8 x M16
:	S ₁	6 x M12	6 x M16	6 x M16	8 x M16	8 x M20
s	5) 2	M10	M10	M10	M12	M12
	SW	18/19	18/19	24	24	24
	5W ₁	10	14	14	14	17
	SW ₂	16/17	16/17	18/19	24	24
	ι [°]	35	45	45	45	45
β	; [°]	31	25	25	25	25

2) When using a ROBA®-switch.

3) For smaller bores, please contact *mayr*[®] power transmission.

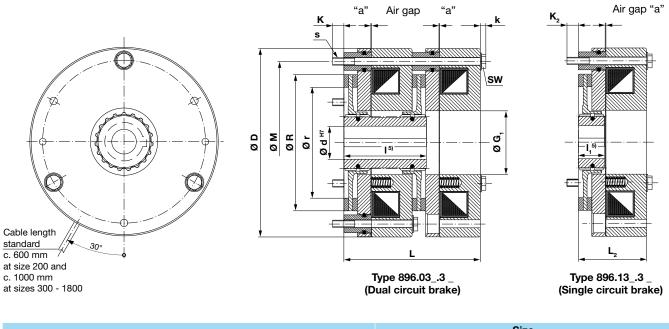
4) Please observe the load on the shaft or key.

5) Eyebolt (installation aid, not included in delivery).

We reserve the right to make dimensional and constructional alterations.

Order Number Without additional parts 0 Emergency hand release 1 Release monitoring 2 Emergency hand release/release monitoring 3 Flange plate 4 Flange plate/emergency hand release 5 Flange plate/emergency hand release/release monitoring 6 0 Without additional parts Flange plate/release monitoring 7 With cover 1 \bigtriangledown $\overline{\checkmark}$ 9 2 3 8 / / / 6 \triangle \triangle \triangle \triangle \triangle \bigtriangleup Sizes 0 Connection cable Coil voltage 6) 7) Nominal braking torque 100 % Hub bore Keyway acc. 300 Braking torque adjustment 7) 120 % 1 24, 104, 180, 207 Ø d H7 DIN 6885/1 Braking torque adjustment 75 % 2 to [VDC] (Dimensions 1800 page 9)

6) We recommend connection via smoothed DC voltage or a $\it mayr^{\odot}\mbox{-bridge}$ rectifier.


7) At a braking torque adjustment of 120 %, overexcitation (1,5 to 2 x the nominal voltage) is required for safe and fast release, using our ROBA[®]-switch fast acting rectifier (please contact *mayr*[®] power transmission if necessary).

Example: 800 / 896.205.30 / 104 / 60 / 6885/1

Design with higher braking torques for passenger elevators Type 896._3_.3_ Sizes 200 to 1800

Noises < 60 dB(A) (Noise pressure level measurement)

Technical Data			Size						
Technical Data				200	300	500	800	1300	1800
Newinal braking targue 1)	Type 896.033 _	M_{nom}	[Nm]	2 x 300	2 x 500	2 x 800	2 x 1200	2 x 1800	2 x 2300
Nominal braking torque ¹⁾	Type 896.133 _	M _{nom}	[Nm]	300	500	800	1200	1800	2300
	Type 896.033 _ 2)	P ₂₀	[W]	2 x 304	2 x 348	2 x 352	2 x 412	2 x 500	2 x 552
Input power	Type 896.033 _ ³⁾	P ₂₀	[W]	2 x 76	2 x 87	2 x 88	2 x 103	2 x 125	2 x 138
	Type 896.133 _	P ₂₀	[W]	76	87	88	103	125	138
Weight (pilot bored)	Type 896.033 _		[kg]	34	49	60	92	126	158
weight (pliot bored)	Type 896.133 _		[kg]	17	24	30	46	63	79
Max. speed		n _{max}	[rpm]	500	500	250	250	250	250
Nominal air gap (tolerance ± 0,0	7)	а	[mm]	0,5	0,5	0,5	0,5	0,5	0,5
For safe and fast brake release	, overexcitation (1,5 to 2	x the no	minal vo	ltage) is re	equired.				
Preferred voltages in operation	with ROBA®-switch:								
Nominal voltage: 104 V => overexcitation voltage: 207 V on alternative				ating volta	ge: 230 VA	C			
Nominal voltage: 180 V => overexcitation voltage: 360 V on altern				nating voltage: 400 VAC					
Nominal voltage: 207 V => ov	erexcitation voltage:	360 V	on alterna	ating volta	ae: 400 VA	С			

Nominal voltage: 24 V available on request

1) Minimum nominal braking torque / braking torque tolerance + 60 %.

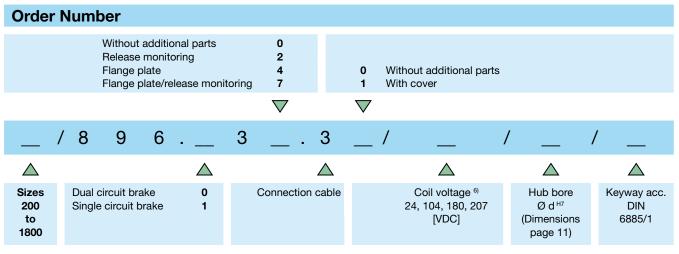
2) Capacity for overexcitation when using a ROBA®-switch.

3) Capacity for nominal voltage.

TÜV (German Technical Inspectorate) License:

The sizes 200 to 1800 with a **microswitch for release monitoring** have been prototype-inspected by the South German TÜV as brake systems having an effect on the drive sheave shaft and as part of a protective system for the upwards-moving elevator cage against excessive speed.

License number:	Dual circuit brake	ABV 760/1
	Single circuit brake	ABV 761/1

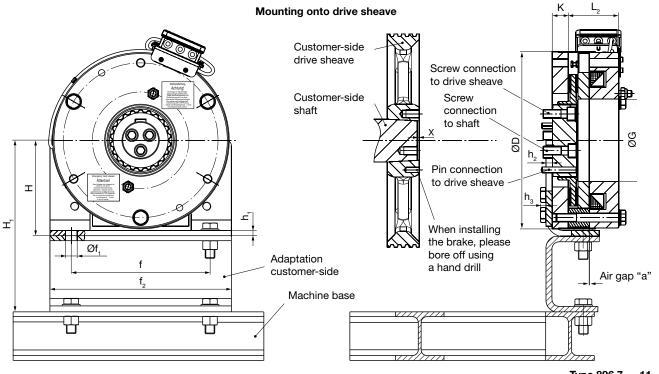

Type 896._3_.3_ - Sizes 200 to 1800

	Dimensions			Size													
	Dimensions	200	300	500	800	1300	1800										
	Ø d ^{H7 4)}	45	50	60	70	85	95										
	ØD	223	261	285	329	370	415										
ØG, k		84	96	114	135	146	160										
		8,9	10	10	13	13	13										
	К	15,9	18,7	21,5	20,5	28	24,5										
	K ₂	11,7	18,1	21,5	22,5	27,5	24,5										
	L	152	159	172	189	199	205										
	L ₂	76	79,5	86	94,5	99,5	102,5										
	5)	88	93	102	122	142	152										
	l ₁ ⁵⁾	35	50	50	60	70	75										
	ØМ	196	230	250	290	330	370										
	Ør	122	135	150	180	208	230										
	ØR	170	188	213	246	283,5	320										
•	Туре 896.033 _	6 x M10	6 x M12	6 x M12	6 x M16	8 x M16	8 x M16										
S	Туре 896.133 _	3 x M10	3 x M12	3 x M12	3 x M16	4 x M16	4 x M16										
	SW	16/17	18/19	18/19	24	24	24										

4) Other diameters available on request.

5) Please observe the load on the shaft or the key.

We reserve the right to make dimensional and conctructional alterations.

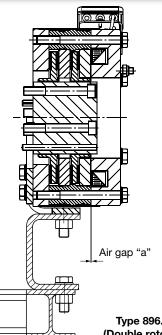

Example: 500 / 896.034.31 / 104 / 60 / 6885/1

Hand release or emergency hand release available on request.

6) Overexcitation (1,5 to 2 x the nominal voltage) is required for safe and fast brake release, using our ROBA®-switch fast acting rectifier (please contact mayr[®] power transmission if necessary).

Noises < 65 dB(A) (Noise pressure level measurement) at nominal braking torque

Type 896.7_ _.11 (Single rotor design)


Technical Data					Size 2)							
Technical Data				500	800	1300	1800					
Nominal braking	Туре 896.7		M _{nom}	[Nm]	500	800	1300	1800				
torque ¹⁾	M _{nom}	[Nm]	1000	1600	2600	3600						
Input power			P ₂₀	[W]	90	107	130	150				
Type 896.7 (Tolerance ± 0,07)				[mm]	0,5	0,5	0,5	0,5				
Nominal air gap	Туре 896.8	(Tolerance ^{+0,15} -0,1	а	[mm]	0,6	0,65	0,7	0,7				

1) Braking torque tolerance + 60 %. For other braking torque adjustments: see Table below.

Braking Torque	Braking Torque Adjustment [Nm]												
		Siz	e ²⁾										
	500 800 1300 18												
Single rotor design	n Type 896.7 _	_•											
100 %	500	800	1300	1800									
120 %	600	1000	1560	2150									
75 %	380	600	980	1350									
Higher braking torque ^{3) 4)}	800	1200	1800	2300									
Double rotor desig	yn Type 896.8 _												
100 %	1000	1600	2600	3600									
120 % ⁴⁾	1200	2000	3120	4300									
75 %	760	1200	1960	2700									
Higher braking torque ^{3) 4)}	1600	2400	3600	4600									

2) Size 300 available on request.

3) Switching noises < 75 dB(A) (noise pressure level measurement).

Type 896.8_ _.11 (Double rotor design)

	Dimensions		Siz	e ²⁾	
L	Jimensions	500	800	1300	1800
	ØD	288	332	373	418
	f	220	260	300	345
	Øf ₁	22	22	25	25
	f ₂	290	340	380	425
	ØG	114	135	146	160
	Туре 896.7	86	94,5	99,5	102,5
L 2	Type 896.8	120,6	133,7	143,7	148,7
	н	160	180	200	225
	h,	11	11	11	11
	h ₂	12	12	12	12
h	Туре 896.7	7,5	10	12,5	12,5
h ₃	Type 896.8	10	13	16,5	16,5
	К	28	30	30	36

We reserve the right to make dimensional and constructional alterations.

In order to adapt the brake system to your application - in order to produce a customer-specific adapter shaft - we require from you the following drive-specific information (see also Fig., page 12):

Incluce noice in share he	ing-side:	Th	readed holes in drive	sheave:	Dimen	Dimensions and Technical Data:				
Threaded hole number		Th	readed hole number		Dimens	sion X (Fig.) [mm]				
Fhreaded hole-Ø Fhreaded hole depth [mm]			readed hole-Ø readed hole depth [mr	 n]	•	r position of bore tes to each other [°]				
Pitch circle-Ø [mm]			ch circle-Ø [mm]		•	ed braking torque drive sheave [Nm]				
						eight available on he base H ₁ [mm]				
Order Number										
Without additional parts Emergency hand release Release monitoring Emergency hand release/ Flange plate Flange plate/emergency h	and release	-	0 1 2 3 4 5	1 3 4 5 6 7	Terminal box with a Connection cable Terminal box with a Terminal box with a Terminal box with a Terminal box with a	half wave rectifier bridge rectifier spark quenching unit				
Flange plate/emergency h Flange plate/release mon		elease m	onitoring 6 7		0 Without ac1 With cover	lditional parts				
			\bigtriangledown	∇	\bigtriangledown					
/ 8 9	6.		·		/	·				
\bigtriangleup		\bigtriangleup	\bigtriangleup			\bigtriangleup				
Sizes ²⁾ Single rotor of 500 Double rotor to 1800	•	7 8		que adjust que adjust	ment ⁴⁾ 120 % ment 75 %	Coil voltage ⁴⁾ 24, 104, 180, 207 [VDC]				
Example: 500 / 896.701.	31 / 104		torque (on all desig	ins), overexc	itation (1,5 to 2 x the ne	le rotor design) and at a higher braking ominal voltage) is required for safe ∙ectifier (please contact <i>mayr</i> [©] power				

The sizes 500 to 1800 (size 300 available on request) with a microswitch for release monitoring have been prototype-inspected by the South German TÜV as brake systems having an effect on the drive sheave shaft and as part of a protective system for the upwards-moving elevator cage against excessive speed.

These brakes are single circuit brakes. A service brake is additionally required in elevators.

License number:	Single rotor design	ABV 781
	Double rotor design	ABV 782

Installation ROBA-stop®-silenzio®

Parts List (Only use mayr® original parts)

- Hub assembly with 2 O-rings (2) 1
- 1.1 *Hub assembly with 1 O-ring (2)
- 2 O-rina
- Coil carrier assemblies 1 and 2 3
- 4 Armature disks 1 and 2
- 5 Rotor 1
- 5.1 Rotor 2

8.1 **Hexagon head screw 14 Thrust spring

6.2 Hand release rod

Hexagon head screw

8

15 Shoulder screw * Only on single circuit brake design ** On sizes 4 to 300, only on

single circuit brake design

6 Hand release assembly 6.1 Switching bracket

Installation Conditions (Figs. 1, 2 and 3)

- The eccentricity of the shaft end in relation to the fixing hole must not exceed 0,2 mm.
- The position tolerance of the tapped holes for the hexagon head screws (8 and 8.1) must not exceed 0.2 mm.
- The axial run-out deviation of the screw-on surface to the shaft must not exceed the permitted axial run-out tolerance according to DIN 42955 R. The related diameter is the pitch circle diameter to the brake attachment. Larger deviations can lead to a drop in torque, to continuous slipping on the rotors and to over-heating.
- The tolerances of the hub (1) and the shaft are to be chosen so that the hub toothing (1) is not widened. Toothing widening leads to the rotors (5 and 5.1) clamping on the hub (1) and therefore to brake malfunctions (recommended hub - shaft tolerance H7/k6).
- Rotors (5 and 5.1) and brake surfaces must be oil and grease-free. A suitable counter friction surface (steel or cast iron) must be used. Sharp-edged interruptions on the friction surface are to be avoided. Recommended surface quality in the friction surface area: Ra = 1,6 μm.

In particular customer-side attachment surfaces made of grev cast iron are to be rubbed down with fine sandpaper (grain ~ 400).

Short Description (Figs. 1, 2 and 3)

Please find detailed installation descriptions in the respective product Installation and Operational Instructions (also at www.mayr.de).

- 1. Mount the hub assembly with O-rings (1 and 2) onto the shaft, observing the entire carrying length of the key, and secure it axially (e.g. with a locking ring).
- 2. Push rotor 1 (5) by hand using light pressure over the O-rings (2) on the hub (1) and bring it into the correct position (rotor collar should be facing away from the machine wall). Make sure that the toothing moves easily. Do not damage the O-rings (2).
- Push the brake body 1 (3) over the hub (1) up to the shoulder on rotor 1 (5) and turn it into the correct position, aligned with the threaded bores on the machine wall.
- 4. Push the rotor 2 (5.1) by hand using light pressure over the O-ring (2) onto the hub (1) and bring it into the correct position (rotor collar should face the machine wall). Make sure that the toothing moves easily. Do not damage the O-rings (2).
- Turn brake body 2 (3) with inserted fixing screws (8) to the 5. correct position.

Thread the fixing screws (8) into brake body 2 (3) and screw the entire brake onto the machine wall (observe the tightening torques acc. Table 1).

6. Inspect air gap "a" according to Table 1. The nominal air gap must be present.

Hand Release

A hand release (6) is installed manufacturer-side, dependent on size and Type (see Type key pages 5 and 7 and Table 1). From size 800, both circuits are released simultaneously with a lever.

Technical Data – Install	otio	-						S	ize					
Technical Data - Install	auo	Π	4	8	16	32	64	100	200	300	500	800	1300	1800
Nominal air gap Release force per lever / at nominal torque		[mm]	0,4 ± 0,07	0,5 ± 0,07										
		[N]	35	35	110	100	130	110	200	250	300	ca. 300	ca. 320	ca. 350
Actuation angle Hand release	α	[°]	15	15	15	15	15	15	15	15	-	-	-	-
Tightening torque fixing screw Item 8		[Nm]	3	5	10	13	30	36	71	123	123	250	250	300

Brake Dimensioning

Brake Size Selection

1. Bra	ke s	election			Key:
		9550 x P	м IZ — М	[New]	J
$M_{req.}$	= -	n	$- X K \le M_2$	[Nm]	К
+		Jxn	_	[sec]	
t _v	-	9,55 x M_v		[300]	$M_{req.}$
t ₄	=	$t_{v} + t_{1}$		[sec]	M_v
M_v	=	$M_{2} + (-)^{*} M_{L}$		[Nm]	M_{L}

2. Inspection of thermic load

$$Q_{r} = \frac{J \times n^{2}}{182,4} \times \frac{M_{2}}{M_{v}}$$
[J/ braking]

The permitted friction work Q $_{\rm r\,perm.}$ per braking for the specified switching frequency can be taken from the friction-power diagrams (page 16).

If the friction work per braking is known, the max. switching frequency can also be taken from the friction-power diagrams (page 16).

ncy.		
J	[kgm ²]	Mass moment of inertia
К	[-]	Safety factor
		(1 – 3 x acc. to conditions)
$M_{req.}$	[Nm]	Required braking torque
M_v	[Nm]	Delaying torque
M_{L}	[Nm]	Load torque on system * sign in brackets is
		valid if load is braked during downward
M_2	[Nm]	Nominal torque (Technical Data pages 4 – 12)
n	[rpm]	Speed
Ρ	[kW]	Input power
t _v	[s]	Braking action
t ₁	[s]	Connection time (Tables 4 and 5, page 17)
t ₄	[s]	Total switch-on time
Q_r	[J/braking]	Friction work present per braking
Q _{r 0,1}	[J/0,1]	Friction work per 0,1 mm wear (Table 2)
Q _{r tot.}	[J]	Friction work up to rotor replacement (Table 2)

Please Observe!

Due to operating parameters such as slipping speed, pressing or temperature the wear values can only be considered guideline values.

Eviation Wa	Friction Work				Size										
			4	8	16	32	64	100	200	300	500	800	1300	1800	
per 0,1 mm wear	Туре 896	Q _{r 0,1}	[10 ⁶ J/0,1]	22	28	56	73	116	155	227	269	215	249	357	447
up to rotor replacement	Туре 896	Q _{r tot.}	[10 ⁶ J]	66	84	280	292	348	465	908	1076	1075	1245	1785	2235

Table 2

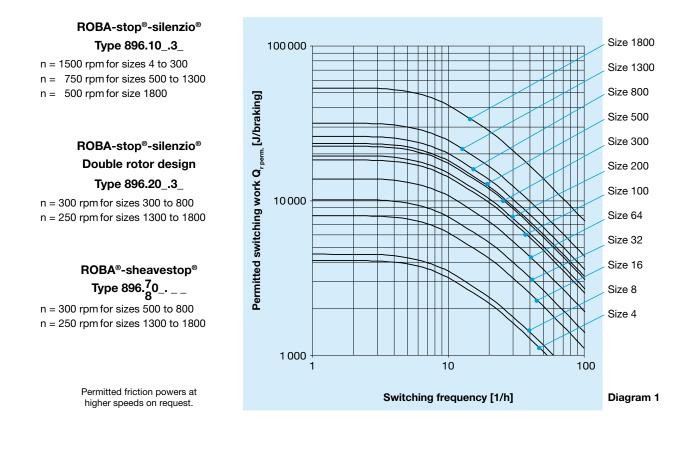
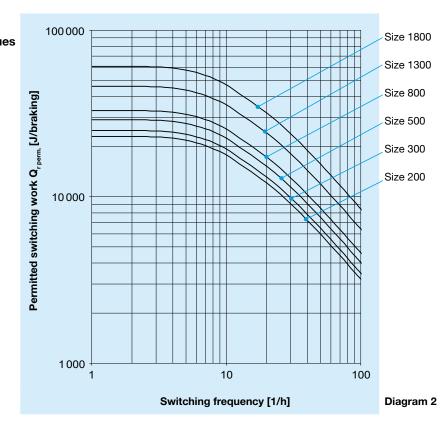

Mass Moment of Inertia								Si	ze					
Rotor + hub at d _{max}			4	8	16	32	64	100	200	300	500	800	1300	1800
ROBA-stop®-silenzio®														
Type 896.003_ J _{R+H} [10 ⁻⁴ kgm ²]				0,810	2,45	6,39	12,0	23,7	57,9	91,5	222	405	801	1160
Type 896.103_ J _{R+H} [10 ⁻⁴ kgm ²]				0,405	1,23	3,20	6,01	11,8	28,9	45,8	111	203	401	580
Double rotor design														
Туре 896.203_	Type 896.203_ J _{R+H} [10 ⁻⁴ kgm ²]			-	-	-	-	-	-	91,5	222	405	801	1160
Design with higher braking torques														
Туре 896.033_	$J_{\text{R+H}}$	[10 ⁻⁴ kgm ²]	-	-	-	-	-	-	57,9	91,5	222	405	801	1160
Type 896.133_	Type 896.133_ J _{R+H} [10 ⁻⁴ kgm ²]			-	-	-	-	-	28,9	45,8	111	203	401	580
ROBA®-sheavestop®														
Type 896.70 J _{R+H} [10 ⁻⁴ kgm ²]			-	-	-	-	-	-	-	-	111	203	401	580
Type 896.80	J_{R+H}	[10 ⁻⁴ kgm ²]	-	-	-	-	-	-	-	-	222	405	801	1160

Table 3



Friction-Power Diagrams

ROBA-stop[®]-silenzio[®] design with higher braking torques

Permitted friction powers at higher speeds on request.

Switching Times

According to directive VDI 2241, the switching times are measured with a sliding speed of 1 m/s with reference to a mean friction radius. The brake switching times are influenced by the temperature, by the air gap between the armature disk and the coil carrier, which depends on the wear status of the linings, and by the type of quenching circuit. The values stated in the Table are mean values which refer to the nominal air gap and the nominal torque on a warm brake.

Typical switching time tolerances are ± 20 %.

Please Observe: DC-side switching

When measuring the DC-side switching times (t_{11} – time), the inductive switch-off peaks are according to VDE 0580 limited to values smaller than 1200 volts. If other quenching circuits and constructional elements are installed, this switching time t_{11} and therefore also switching time t_1 increase.

Cwitching Times	- Turne 000 - 0			Size											
Switching Time	s Type 8960			4	8	16	32	64	100	200	300	500	800	1300	1800
Nominal braking torque Type 896.10 M ₂ [Nr			[Nm]	4	8	16	32	64	100	200	300	500	800	1300	1800
Connection time	DC-side switching	t,	[ms]	33	39	99	118	107	120	185	246	259	267	266	420
Connection time	AC-side switching	t,	[ms]	135	196	398	518	447	488	968	1087	1023	1231	1464	1920
Response delay	DC-side switching	t ₁₁	[ms]	6	9	17	29	18	13	56	57	59	67	72	105
on connection	AC-side switching	t ₁₁	[ms]	52	79	145	229	164	154	412	429	518	531	588	800
Separation time		t ₂	[ms]	52	70	94	120	174	234	270	308	444	581	589	850

Table 4: Switching times Type 896. _0 _ . _ _: ROBA-stop®-silenzio®, Double rotor design from size 300, ROBA®-sheavestop® from size 500

Switching Times Type 8963			Size						
			200	300	500	800	1300	1800	
Nominal braking torque Type 896.13 M2 [N		[Nm]	300	500	800	1200	1800	2300	
Connection time	DC-side switching	t,	[ms]	108	162	168	236	233	500
	AC-side switching	t,	[ms]	590	600	953	1100	1300	1700
Response delay on connection	DC-side switching	t ₁₁	[ms]	13	13	38	56	34	80
	AC-side switching	t ₁₁	[ms]	165	153	136	395	302	570
Separation time (with overexcitation) t ₂ [ms]		155	193	255	272	787	945		

 Table 5: Switching times Type 896. _ 3 _ . _ _: ROBA-stop®-silenzio® design with higher braking torques

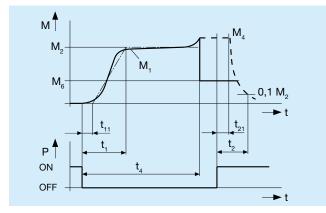


Diagram 3: Torque-Time

Key:

- M_1 = Switching torque
- M₂ = Nominal torque (characteristic torque)
- M_4 = Transmittable torque
- M_6 = Load torque
- P = Input power
- $t_1 = Connection time$
- t₁₁ = Response delay on connection
- t₂ = Separation time
- t₂₁ = Response delay on separation
- t_4 = Total switch-on time + t_{11}

Electrical Connection and Wiring

DC current is necessary for the operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (± 10 % tolerance). The device can be operated with AC voltage in connection with a rectifier as well as with other suitable DC voltage supplies. Dependent on the brake equipment, the connection possibilities can vary. Please follow the exact connections according to the wiring diagram. The manufacturer and the user must observe the applicable directives and standards (e. g. DIN EN 60204-1 and DIN VDE 0580). Their observance must be guaranteed and double-checked.

Supply voltage requirements when operating noisedamped brakes.

In order to minimise the noise development on released brakes, they may only be operated via DC voltage with low ripple content. Operation is possible with AC voltage using a bridge rectifier or another suitable DC supply. Supplies whose output voltage show a high ripple content (e.g. half-wave rectifiers, phase controlled modulators, ...) are unsuitable for brake operation.

At variance with this, brakes specially dimensioned for overexcitation must be operated with the ROBA®-switch fast acting rectifier.

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basis insulation but also the connection of all conductive parts to the PE conductor on the fixed installation. If the basis insulation fails, no contact voltage will remain. Please carry out a standardized inspection of the PE conductor connections to all contactable metal parts.

Device Fuses

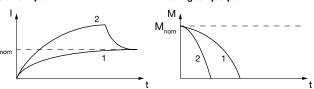
To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Schaltverhalten

The operational behaviour of a brake is to a large extent dependent on the switching mode used. Furthermore, the switching times are influenced by the temperature and the air gap between the armature disk and the coil carrier (dependent on the wear condition of the linings).

Magnetic Field Build-up

When the voltage is switched on, a magnetic field is built up in the brake coil, which attracts the armature disk to the coil carrier and releases the brake.


• Field Build-up with Normal Excitation

If we energise the magnetic coil with nominal voltage the coil voltage does not immediately reach its nominal value. The coil inductivity causes the current to rise slowly as an exponential function. Accordingly, the build-up of the magnetic field happens more slowly and the braking torque drop (curve 1, above) is also delayed.

Field Build-up with Overexcitation

A quicker drop in braking torque is achieved if the coil is temporarily placed under a higher voltage than the nominal voltage, as the current then increases more quickly. Once the brake is released, switch to the nominal voltage (curve 2, above). The relationship between overexcitation and separation time $\mathbf{t}_{_{2}}$ is approximately indirectly proportional. This means that, using doubled nominal voltage, it is possible to halve the separation time t_a in order to release the brake. The ROBA®-switch fast acting rectifier works on this principle.

Current path Braking torque path

Operation with overexcitation requires testing of:

- the necessary overexcitation time '
- as well as of the RMS coil capacity ** for a cycle frequency higher than 1 cycle per minute.

* Overexcitation time t

Increased wear and therefore an enlarged air gap as well as coil heat-up lengthen the separation time t_a of the brake. Therefore, as overexcitation time t_{over} , please select at least double the separation time t₂ with nominal power on each brake size.

The spring forces also influence the brake separation time t₂: Higher spring forces increase the separation time t, and lower spring forces reduce the separation time t₂.

Spring force (braking torque adjustment) = 100 %:

The overexcitation time t_{over} is double the separation time t_2 on each brake size.

Spring force (braking torque adjustment) > 100 %:

The overexcitation time $\boldsymbol{t}_{\scriptscriptstyle over}$ is higher than double the separation time t, on each brake size.

** RMS coil capacity P_{RMS}

The coil capacity P_{RMS} may not be larger than P_{nom}. Otherwise, the coil may fail due to thermic overload.

Calculations:

P_{RMS}

[W] RMS coil capacity, dependent on switching frequency, overexcitation, power reduction and switch-on time duration

$$RMS = \frac{P_{over} \times t_{over} + P_{nom} \times t_{nom}}{t_{tot}}$$

 $\mathsf{P}_{\mathsf{nom}}$ [W] [W]

Coil nominal capacity (Catalogue value, Type tag) Coil capacity on overexcitation

$$P_{over} = \left(\begin{array}{c} U_{over} \\ \hline U_{nom} \end{array} \right)^2 \times P_{non}$$

[s] Time of operation with power reduction

[s] Time of operation with coil nominal voltage

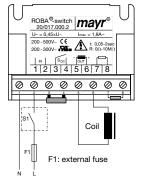
P

voltage [s] Total time $(t_{over} + t_{nom} + t_{off})$

[\/] Overexcitation voltage (bridge voltage)

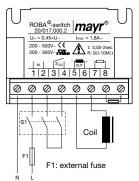
U_{nom} [V]

Time Diagram:


U

Magnetic Field Removal

AC-side Switching



The power circuit is interrupted before the rectifier. The magnetic field slowly reduces. This delays the rise in braking torque.

When switching times are not important, please switch AC-side, as no protective measures are necessary for coil and switching contacts.

AC-side switching means **low-noise switching**; however, the brake engagement time is longer (c. 6 - 10 times longer than with DC-side switch-off). Use for non-critical braking times.

DC-side Switching

The power circuit is interrupted between the rectifier and the coil as well as mains-side. The magnetic field is removed very quickly, resulting in a rapid rise in braking torque.

When switching DC-side, high voltage peaks are produced in the coil, which lead to wear on the contacts from sparks and to destruction of the insulation.

DC-side switching means **short brake engagement time (e.g. for EMERGENCY STOP operation)**. However, this produces louder switching noises.

• Protective Circuit

When using DC-side switching, the coil must be protected by a suitable protective circuit according to VDE 0580, which is integrated in *mayr*[®] rectifiers. To protect the switching contact from consumption when using DC-side switching, additional protective measures may be necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operation current are sufficient. Depending on the application, the switching contact can also be protected by other protective circuits (e.g. *mayr*[®] spark quencher), although this may of course then alter the switching time.

CN[®]**US CE**189728

Application

Reduces spark production on the switching contacts occurring during VDC inductive load switching.

- Voltage limitation according to VDE0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2-4 compared to free-wheeling diodes.

Function

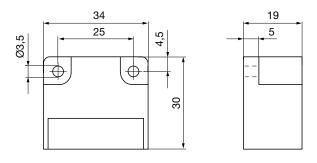
The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact

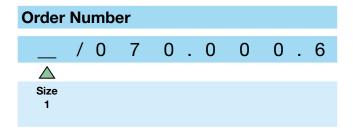
opening distance of > 3 mm are suitable for this purpose.

Electrical Connection (Terminals)

- 1 (+) Input voltage
- 2 (-) Input voltage
- 3 (–) Coil
- 4 (+) Coil
- 5 Free nc terminal
- 6 Free nc terminal

Technical Data

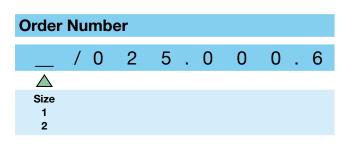

Input voltage	max. 300 VDC, max. 615 V_{peak}				
	(rectified voltage 400 VAC,				
	50/60 Hz)				
Switch-off energy	max. 9 J/2 ms				
Power dissipation	max. 0,1 Watt				
Max. voltage nc terminals	250 V				
Protection	IP65 / IP20 terminals				
Ambient temperature	-25 °C up to +85 °C				
Storage temperature	-25 °C up to +105 °C				
Max. conductor connection					
diameter	2,5 mm ² / AWG 26-12				
Max. terminal tightening torque 0,5 Nm					


Accessories

Mounting bracket set for 35 mm rail acc. to EN50022 Article-No. 1803201

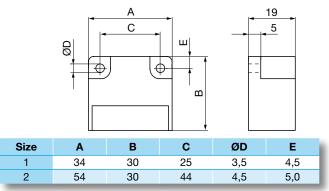
Dimensions (mm)

Application


Rectifiers are used to connect DC units to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop®, ROBA-quick®, ROBATIC®), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function

The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.


Electrical Connection (Terminals)

- 1 + 2 Input voltage
- 3 + 4 Connection for an external switch for DC-side switching
- 5 + 6 Coil
- 7 10 Free nc terminals (only for size 2)

Dimensions (mm)

Accessories:

Bridge rectifier

Mounting bracket set for 35 mm rail acc. to EN 50022: Article-No. 1803201

Technical Data

	Diluge lectiller			
Calculation output voltage	VDC = VAC x 0,9			
Туре	1/025	2/025		
Max. input voltage	230 VAC	230 VAC		
Max. output voltage	207 VDC	207 VDC		
Output current at ≤ 50°C	2,5 A	2,5 A		
Output current at max. 85 °C	1,7 A	1,7 A		
Max. coil capacity at 115 VAC ≤ 50 °C	260 W	260 W		
Max. coil capacity at 115 VAC up to 85 °C	177 W	177 W		
Max. coil capacity at 230 VAC \leq 50 °C	517 W	517 W		
Max. coil capacity at 230 VAC up to 85 °C	352 W	352 W		
Max. coil capacity at 400 VAC \leq 50 °C	-	-		
Max. coil capacity at 400 VAC up to 85 °C	-	-		
Max. coil capacity at 500 VAC \leq 50 °C	-	-		
Max. coil capacity at 500 VAC up to 85 °C	-	-		
Max. coil capacity at 600 VAC \leq 50 °C	-	-		
Max. coil capacity at 600 VAC up to 85 °C	-	-		
Peak reverse voltage	1600 V	1600 V		
Rated insulation voltage	250 V _{RMS}	320 V _{RMS}		
Pollution degree (insulation coordination)	2	2		
Protection fuse	To be included in the input voltage line.			
Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capaci- ties, the permitted limit integral I ² t must be observed on selection.	FF 3,15A	FF 3,15A		
Permitted limit integral I ² t	40 A ² s	40 A ² s		
Protection	IP65 components, encapsulated / IP20 terminals			
Terminals	Cross-section 0,14 - 1,5 mm ² (AWG 26-14)			
Ambient temperature	- 25 °C up to + 85 °C			
Storage temperature	- 25 °C up to + 105 °C			
Conformity markings	UL, CE	UL, CE		
Installation conditions	The installation position can be user-defined. Please ensure sufficient heat dissipation and air convection! Do not install near to sources of intense heat!			

c Wus

Application

ROBA[®]-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and couplings (ROBA-stop[®], ROBA[®]-quick, ROBATIC[®]) as well as electromagnets and electrovalves etc.

Fast acting rectifier ROBA®-switch 017._00.2

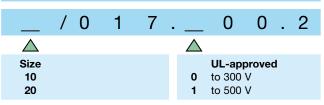
- Consumer operation with overexcitation or power reduction
- Input voltage: 100 500 VAC
- Maximum output power: 3 A at 250 VAC
- UL-approved

Function

The ROBA®-switch units are used for operation at an input voltage of between 100 and 500 VAC, dependent on size. They can switch internally from bridge rectification output voltage to half-wave rectification output voltage. The bridge rectification time can be modified from 0,05 to 2 seconds by exchanging the external resistor.

Electrical Connection (Terminals)

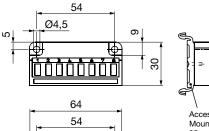
- 1 + 2 Input voltage (fitted protective varistor)
- 3+4 Connection for external contact for DC-side switch-off
- 5 + 6 Output voltage (fitted protective varistor)
- 7 + 8 R_{ext} for bridge rectifier timing adjustment

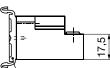

Technical Data

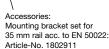
Input voltage	see Table 1
Output voltage	see Table 1
Protection	IP65 components, IP20 terminals,
	IP10 R _{ext}
Terminal nom. cross-section	1,5 mm ² , (AWG 22-14)
Ambient temperature	-25 °C up to +70 °C
Storage temperature	-40 °C up to +105 °C

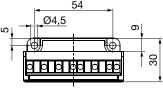
ROBA®-switch Sizes, Table 1

	Size					
	Type 01	7.000.2	Type 017.100.2			
	10	20	10	20		
Input voltage VAC ± 10 %	100 - 250	200 - 500	100 - 250	200 - 500		
Output voltage VDC, U _{bridge}	90 - 225	180 - 450	90 - 225	180 - 450		
Output voltage VDC, U _{half-wave}	45 - 113	90 - 225	45 - 113	90 - 225		
Output current I_{RMS} at \leq 45 °C, (A)	2,0	1,8	3,0	2,0		
Output current I _{RMS} at max. 70 °C, (A)	1,0	0,9	1,5	1,0		
Comformity markings	с ЯЦ ия С Е	c Sus up to 300 V	₀ ₽\ `us (€			
-		נכ	נכ	עכ		


Order Number




Dimensions (mm)



Type 017.100.2

5,6

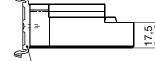
64

54

9090909909099

69

45 6


2 3

15

78 8

73,6

4,5

Accessories: Mounting bracket set for 35 mm rail acc. to EN 50022: Article-No. 1802911

Declaration of Conformity

A conformity evaluation for the applicable EU directives has been carried out for this product. The conformity evaluation is set out in writing in a separate document and can be requested if required. It is forbidden to start use of the product until the machine or system into which it should be built is operating in accordance with all applicable EU directives.

Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. This statement is based on the ATEX directive.

Safety Regulations

Danger of death! Do not touch voltage-carrying cables and components.

This warning applies if:

- the safety brakes are used incorrectly.
- the safety brakes are modified.
- the relevant standards for safety and/or installation conditions are ignored.

To prevent injury or damage, only professionals and specialists should work on the devices.

Warning!

Before product installation and initial operation, please read the Installation and Operational Instructions carefully and observe the Safety Regulations. Incorrect operation can cause injury or damage.

The safety brakes have been developed in accordance with the latest technology regulations and are, at the point of delivery, operationally safe.

Safety brakes are not suitable for use in areas where there is a high danger of explosion or aggressive atmospheres.

Please Observe!

- Only specialists who are trained in the transport, installation, operation, maintenance and general operation of these devices and who are aware of the relevant standards should be allowed to carry out this work.
- Technical data and specifications (Type tags and documentation) must be followed.
- The correct connection voltage must be connected according to the Type tag.
- Never loosen electrical connections or carry out installations, maintenance or repairs while the voltage connection is energised!
- Cable connections must not be placed under mechanical strain.
- Check electrical components for signs of damage before putting them into operation. Never bring them into contact with water or other fluids.
- The braking torque is lost if the friction lining and/or the friction surface come into contact with oil or grease.

User-implemented Protective Measures:

- Please cover moving parts to protect against injury through seizure and catapulted objects.
- Place a cover on the magnetic part to protect against injury through high temperatures.
- Protect against electric shocks by installing a conductive connection between the magnetic component and the PE conductor on the permanent installation (Protection Class I).

- **Guidelines for Electromagnetic Compatibility (EMC)**
 - In accordance with the EMC directives 89/336/EEC, the individual components produce no emissions. However, functional components e.g. rectifiers, phase demodulators, ROBA®-switch devices or similar controls for mains-side energisation of the brakes can produce disturbance which lies above the allowed limit values. For this reason it is important to read the Installation and Operational Instructions very carefully and to keep to the EMC directives.

Protection Class I

This protection can only be guaranteed if the basic insulation is intact and if all conductive parts are connected to the PE conductor. Should the basic insulation fail, the contact voltage cannot remain (VDE 0580).

Protection (Mechanical) IP10

Protected against large body surfaces and against large foreign bodies > 50 mm diameter. Not waterproof.

Protection (Elecrical) IP54

Dust-proof and protected against contact as well as against splashing water from all directions.

Ambient Temperature -20 °C up to +40 °C

Warning!

At temperatures of around or under freezing point, condensation can strongly reduce the torque, or the rotors can freeze up. The user is responsible for taking appropriate countermeasures. At temperatures lower than 0 °C, noise levels may rise.

Device Conditions

The catalogue values are standards which can, in certain cases, vary. When dimensioning the brakes, please remember that installation situations, braking torque fluctuations, permitted friction work, run-in behaviour and wear as well as general ambient conditions can all affect the given values. These factors should therefore be carefully assessed, and alignments made accordingly.

Please Observe!

Mounting dimensions and connecting dimensions must be adjusted according to the size of the brake at the place of installation.

- The brakes are designed for a relative duty cycle of 100 %.
- The brakes are only designed for dry running.

Please Observe!

- The braking torque is lost if the friction surfaces come into contact with oil, grease, water or similar substances.
- The braking torque is dependent on the present run-in condition of the brakes.
- Please provide a protection circuit for damping overvoltages, as on DC-side brake switch-off, very high inductive voltage peaks can occur, which can in extreme cases lead to damage to the coil insulation or to switch contact consumption.
- Please provide additional protective measures against brake corrosion if they are used in extreme ambient conditions or in open-air conditions unprotected from the weather. The metal surface of the brake is corrosion-protected manufacturer-side.

Application

As holding brake with EMERGENCY STOP braking

- in closed buildings (in tropical climates, at high humidity with long down times and sea climates only with special measures)
- in dry running
- installation position horizontal or vertical in clean ambient conditions (coarse dust or liquids of any kind affect the braking function => provide a cover).

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstrasse 1, D-87665 Mauerstetten Tel.: 0 83 41/8 04-241, Fax: 0 83 41/80 44 22 www.mayr.de, eMail: info@mayr.de

Service Germany

Baden-Württemberg

Jochen Maurer Mittlere Holdergasse 5 71672 Marbach Tel.: 0 71 44/1 80 34+35 Fax: 0 71 44/1 53 20

Kamen

Thomas Kant Lünener Strasse 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 16, 215600 Zhangjiagang Tel.: 05 12/58 91-75 62 Fax: 05 12/58 91-75 66 info@mayr.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Representatives

Australia

Transmission Australia Pty. Ltd. 22 Corporate Ave, 3178 Rowville, Victoria Australien Tel.: 0 39/7 55 44 44 Fax: 0 39/7 55 44 11 info@transaus.com.au

South Africa

Torque Transfer Private Bag 9 Elandsfonstein 1406 Tel.: 0 11/3 45 80 00 Fax: 0 11/9 74 05 24 torque@bearings.co.za

Bavaria Manfred Schwarz Eichenstrasse 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

North

Bernd Massmann Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

Great Britain Mayr Transmissions Ltd.

Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland Mayr Kupplungen AG Tobeläckerstrasse 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70

Fax: 0 52/6 74 08 75

info@mayr.ch

Mavr Shanghai

Representative Office

Room 506, No. 1007,

Tel.: 0 21/64 57 39 52

Fax: 0 21/64 57 56 21

sales@mayr.com.cn

Mayr Korea Co. Ltd.

Changwon, Korea

Tel.: 0 55/2 62-40 24

Fax: 0 55/2 62-40 25

info@mayrkorea.com

South Korea

Zhongshan South No. 2 Road

no. 302, 3rd floor, Kyoungnam

209-3, Myoung-Seo Dong,

Taxi Mutual Aid Association Hall,

200030 Shanghai, VR China

China

Franken Jochen Held Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Wolfgang Rattay Jägerstrasse 4 64739 Höchst Tel.: 0 61 63/48 88 Fax: 0 61 63/46 47

France

Mayr France S.A. Z.A.L. du Minopole BP 16 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

India

Mayr Corporation 4 North Street Waldwick NJ 07463 info@mayrcorp.com

National Engineering

Bhosari Pune 411026

Tel.: 0 20/27 47 45 29

Fax: 0 20/27 47 02 29

German Tech Auto Co., Ltd.

Taishan Hsiang, Taipei County 243, Taiwan R.O.C.

No. 162, Hsin sheng Road,

Tel.: 02/29 03 09 39

Fax: 02/29 03 06 36

steve@zfgta.com.tw

Company (NENCO)

J-225, M.I.D.C.

nenco@vsnl.com

Taiwan

Hagen

Detlef Bracht Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0 Fax: 0 23 31/78 03 25

Italv

Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0 49/8 79 10 20 Fax: 0 49/8 79 10 22 info@mayr-italia.it

Japan

Sumitomo Heavy Industries PTC Sales Co., Ltd. (SJS) Think Park Tower 2-1-1 Ohsaki Shinagawa-ku Tokyo 141-6025 Tel.: 03/67 37 25 21 Fax: 03/68 66 51 71 Gotou.k@sumiju.co.jp

Machine tools

Applications in China DTC. Co.Ltd., Block 5th, No. 1699, East Zhulu Road, 201700 Shanghai, China Tel.: 021/59883978 Fax: 021/59883979 dtcshanghai@online.sh.cn

More representatives:

Austria, Benelux States, Brazil, Canada, Czech Republic, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Malaysia, New Zealand, Norway, Philippines, Poland, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.de in the internet.

08/09/2008 SC

USA

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19